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Data obtained in space, particularly that from IMP-1, have estab-
lished that many of the gross features of the interaction of the solar
wind and the geomagnetic field can be described by the continuum theory
of fluid flow. The purpose of this paper is twofold: (a) to indicate
briefly how one can arrive at results for the magnetosphere boundary,
the bow wave, and the assoclated flow field from a purely fluid point
of view without resort to a mixture of particle and fluid models as
usually employed and (b) to present numerical results for the flow param-
eters in the shock layer between the bow wave and the magnetosphere
boundary. The objective is not to get a complicated theory that encom-
Passes all phenomena of importance, but rather the simplest body of anal-
ysis that appears able to describe the average bulk properties of the
solar wind as it flows steadily through the bow wave and around the for-
ward portion of the magnetosphere. A more complete account of this study
is given by Spreiter et. al. (1965).

The fundamental assumption is that the flow can be described ade-
quately by the standard magnetohydrodynamic equations for steady flow of
a dissipationless perfect gas. No attempt will be made here to justify
this assumption in detail, except to remark that the presence of a weak

and irregular magnetic field in the incident solar wind plasma seems
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2
sufficient to couple the motions of the particles even in the absence of

collisions. The differential equations are thus as follows (see, e.g.,

Landau and Lifshitz, 1960).

V,p;r-.-.o w
(v .9y +v = - L% curl B = - A vH + ;E-(H v)H
PAY « Y3 E T b » meRm 8 O L Y& 7 &7
(1)
curl(fxy) =0, divH=0
S/c
(v. 905 -0, p=c! j

where p, p, 5, and y refer to the density, pressure, entropy, and veloc-
ity of the gas, § refers to the magnetic field, y = cp/cv, and cp and
ey are constants representing the specific heats at constant pressure

and constant volume, Important auxiliary relations for 7y, temperature

T, speed of sound a, internal energy e, and enthalpy h are

y = (W+2)/0, P = pRT/u = nkT
a = (3p/30)Y2 = (yp/p)Y2 = (RT/W)Y/2 (2)
e = cyT, h = cpl = e + p/p

| where N represents the number of degrees of freedom, R = (cp - cy)p
= 8.31L4x107 erg/OK, U = mean molecular weight = 1/2 for fully ionized
hydrogen plasma, n = number of particles/em® = 2n, where np is the

- number of protons/cm®, and k = Boltzmann's constant = 1.38x1071° erg/OK.
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Although only first derivatives appear in this system of equations,
the neglected dissipative terms are described by second derivatives.
Their neglect requires that the gradients be small. In magnetohydrody -
namics, as in gasdynamics, however, compressions tend to coalesce and
steepen into shock waves of such small thickness that they can be consid-
ered as virtual discontinuities. In addition, attraction between like

currents tends to cause current distributions to collapse into thin
sheaths, across which the magnetic field can be considered in the same

sense to be nearly discontinuous. Mathematically, continuous solutions
of the dissipationless differential equations cease to exist, and the
flow is no longer governed solely by the equations given sabove. Mass,
momentum, magnetic flux, and energy must still be conserved, however,

and the following relations must hold between quantities on the two sides

of any such discontinuity:

-~
2
)
[ )
]
@)

1
="
,

] 1
ip"n;ft"gﬂrﬂ.}t}% [Hy] = 0
L2 B2 1 _
[pvh <é < ot h> + v, e " I v. E} =0 J

The subscripts n and t refer to components normsl and tangential to the
discontinuity surface and [Q] = Q1 - Qo where subscripts O and 1 refer

to conditions on the upstream and downstream sides of the discontinuity,.
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Five classes of discontinuities are described by equation (3). Fol-
lowing Landau and Lifshitz (1960), discontinuities which lie along stream-
lines (vh = 0) are called tangential discontinuities or contact discon-
tinuitiec according to whether or not the normal component of the mag-
netic field H, vanishes. Discontinuities across which there is flow
(vn £ 0) are divided into three categories called rotational disconti-
nuities, and fast and slow shock waves. Some properties that distinguish
the various discontinuities are summarized below:

Tangential discontinuities

vn=Hn =0 [yl 40, (Bl A0, [el£0, [p+¥/8x] =0

(%)
Contact discontinuities
vp=0, Hy#£0: [yl=(gl=1[p]l=0, [plfO (5)
Rotational discontimuities
/ i/2
Vn = iﬁn/(h{l‘fp)l/E » [X-t] = [Iz{t]/()-‘rﬁp) / )
, (6)
[p] = Ip] = [wm] = [Hy] = [E®] = 0
Shock waves, fast and slow
w#0, [pl>0, [E] =0, W
(pvm) > (pvy) —H(/lm)l/2>(ov)
Neast = \PVn/pot = HnlP - n’ slow (7
o /increase fast
k =
Et and H <decreasé> through <§10%> shock waves ‘




>

Of these, only the tangential discontinuity has properties compat-
ible with those required to describe.the boundary of the geomagnetic
field. As in the classical Chapman-Ferraro theory based on particle
concepts, the condition Hp = O holds and reguires that there is no
connectivity between the geomagnetic and interplanetary fields. Slight
differences stem from the additional assumptions in the Chapman-Ferraro
theory that the incident plasma is free of magnetic field and the outer
magnetosphere is free of plasma so that py = H12/8ﬁ. Although neither
of these statements 1s strictly true, estimates of the magnitudes of the
gas pressure P and the magnetic pressure H2/8n lead to the conclusion
that p << #%/8x in the outer magnetosphere and that p >> B2 /8% in the
shock layer. ©So Tar as the flow outside the magnetosphere is concerned,
the discontinuities at the magnetosphere boundary may thus be approxi-
mated satisfactorily by those of the limiting case of a tangential dis-
continuity in which there is a vacuum on one side, and negligible mag-
netic pressure on the other side. It is demonstrated further by
Spreiter et. al. (1965) that the gas pressure on the magnetosrphere
boundary is adequately approximated by the simple Newtonian formila
P = Kpmvmecosgw where the subscript o refers to the values in the
undisturbed incident stream, ¥ is the angle between the normal to the
boundary and the velocity vector of the undisturbed stream, and K is
a constant usually taken to be unity but which yields better accuracy if
equated to 0.8k for y = 2 and 0.88 for 7 = 5/3. 1In this way, the cal-
culation of the shape of the magnetosphere boundary is decoupled from
the detailed analysis of the surrounding flow and reduced to the identi-

cal mathematical problem described by the classical Chapman-Ferrarc theory.
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Examination of conditions typicil of the solar wind shows that the
mass flux pvy through the nose of “he bow wave is characteristically
about an order of magnitude greater than that through a rotational dis-
continuity. The bow wave must therefore be a fast shock wave.

Although it has been necessary to invoke the presence of a magnetic
field to provide a mechanism for providing interactions between the par-
ticles, and to consider the complications of hydromagnetic theory to pro-
vide an adequate description of the magnetosphere boundary as a tangen-
tial discontinuity and the bow wave as a fast hydromagnetic shock wave,
the magnetic field strengths typically encountered in the solar wind are
sufficiently small as otherwise to produce only secondary effects on the
flow. On this basis, one can justify the neglect of all the terms con-
taining the magnetic field H in eguations (1) and (3) when calculating
the flow. The fluid motion then calculated is just exactly that indi-
cated by ordinary gasdynamic theory. Deformations of the magnetic field

are determined subsequently using the equations

curl (Hx v) =0, daivH=0, [Hy] =0 (8)

which are frequently interpreted as indicating the magnetic field lines
move with the fluid.

In this way, the exterior magnetosphere flow problem is reduced to
a purely gasdynamic problem of supersonic flow past a given body, the
shape of which is determined by solving the standard Chapman-Ferraro
problem, Difficulties associated with the nonlinear and mixed elliptic-
hyperbolic character of the governing partial differential equations

are such, however, that it is necessary at the present time to approximate
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the magnetosphere boundary with an axisymmetric shape. The Precise shape
celected s that obtained by rotating the equatorial trace of the bound-
ary given Ly the approximate solution of Spreiter and Briggs (1962)
about an axis through the center of the earth that extends parallel to
the velocity vector of the undisturbed incident stream.

The principal gasdynamic result presented by Spreiter and Jones
(1963) was a plot of the calculated position of the bow shock wave asso-
clated with the simplified axisymmetric magnetosphere described in the
Preceding paragraph. The calculations were performed for a ratio of
specific heats , of 2, and a free-stream Mach number of 8.71. The
latter was identified with the free-stream Alfvén Mach number associ-
ated with a representative choice of values for the density, velocity,
and magnetic field of the incident solar wind. It is implicit in the
analysis presented above, however, that the gasdynamic Mach number should
more properly be identified with the free-stream Mach number M, = V/aw
than the Alfvén Mach number My = V&(hﬁp/Hg)l/z if MADO is much greater
than unity, as is indeed generally the case in the present applications.
Since a value of 8.71 is also a reasonable choice for Mo, we turn now
to a presentation of further details of the flow field for the same set
of conditions as employed by Spreiter and Jones (1963).

Figure 1 shows a plot of the magnetosphere boundary and shock wave
position for 7 = 2 and M, = 8.71 in terms of a length scale in which
the distance D from the center of the earth to the magnetosphere nose
is unity. D 1is generally of the order of 10 earth radii, and fluctuates
in response to variations in the incident stream in accordance with the

)1/6

expression D = aerOl/s/(Eﬁanqmg where ag = 6.37x108 cm 1is the
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radius of the earth and Hpo = 0.312 gauss is the intensity of the earth's

magnetic field at the equator. Also included on this figure are several

solid lines representing streamlines, and broken lines representing

characteristic or Mach lines of the flow. The latter correspond to

standing compression or expansion waﬁes of infinitesimal amplitude.

They cross the streamlines at such angles that the local velocity com-
ponent normal to the wave is exactly equal to the local sound speed.
Mach lines thus exist only where the flow is supersonic; they are absent
from the vicinity of the magnetosphere nose because the flow there is
subsonic.

Contour maps showing lines of constant density, velocity, temper-
ature, and mass flux, each normalized by dividing by the corresponding
guantity in the incident stream are presented in Figure 2. The results
show that the density ratio p/poo remains close to the maximum value
(y + 1)/(y - 1) = 3 for a strong shock wave in a gas with 7 = 2 along
nearly the entire length of the portion of the bow wave shown. The gas
undergoes a small additional compression as it approaches the stagnation
point at the magnetosphere nose and then expands to less than free-stream
density as it flows around the magnetosphere. The velocity remains less
than in the free stream, however, throughout the same region. The temper-

ature T/T, is closely related to the velocity ratio through the

expression

T 5 T W2 (9)

2
N (7 - )My (l v

derived from eguations (1) and (2) with H = O. Of particular interest

is the tremendous increase in temperature of the solar wind as it passes
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through the bow shock wave. If, for example, the temperature of the
incident solar wind is SO,OOOO K, the temperature at the magnetosphere
nose is indicated to be nearly 2,OOO,OOOO K. This value is consistent
with the temperature possessed by the gas in the solar corona before
it is accelerated to the high velocitles characteristic of the solar
wind in the vicinity of the earth's orbit.

As noted agbove, calculation of the deformation of the magnetic
field in the flow around the magnetosphere can be accomplished directly,
once the flow field is determined, either by direct integration of
equation (8) or by considering the field lines to move with the fluid.
Although the field lines are, in general, spatial curves, simplicity
may be achieved at the expense of completeness by confining attention to
the plane containing the velocity and magnetic field vectors in the
incident stream. Since the magnetosphere has been approximated by an
axisymmetric shape, it follows that the resulting field lines for this
case are also confined entirely to the same plane. Results of two such
calculations are shown in Figure 3. The magnetic field in the incident
stream is inclined at 90° to the direction of the velocity vector in the
left portion of Figure 3, and 45° in the right portion, The correspond-
ing results for 0° inclination are not presented, but can be visualized
easily because the field lines for that case are aligned everywhere with
the streamlines, and the field strength ratio H/Hoo is proportional to
DV/QnWm'

These results clearly show how the magnetic field lines bend dis-
continuously as they pass through the bow wave at any angle except a

right angle, and then curve in a continuous manner throughout the entire
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region between the bow wave and the magnetosphere. The discontinuous
bend at the shock wave is, moreover, always in the direction that pre-
serves the sign of the tangential component of the field, as is required
for all physically relevant hydromagnetic shock waves. It may be seen
that the field lines illustrated in Figure 3 are all draped around the
nose of the magnetosphere. Outside of this plane, however, the field
lines drift past the nose with the flow and deform intoc three-dimensional
curves. The strong constraint imposed on the magnetic field by the
stagnation point is thus greatly reduced, and the field lines may be
anticipated to remain much straighter than illustrated for the plane
of symmetry.

The choice of the value 2 for the ratio of specific heats employed
in calculating Figures 2 and 3 is usually justified by reference to the
Presumed two-degree-of -freedom nature of the interactions of charged
Particles in a magnetic field. This argument weakens, however, when
consideration is given to the irregular character of the magnetic fields
observed in space, particularly downstream of the bow shock wave. In
fact, the whole concept of applying hydromagnetic theory to the flow of
solar plasma around the magnetosphere involving as it does the assumption
of an isotropic pressure appears more consistent internally if the par-
ticles are considered to behave as if they have three rather than two
degrees of freedom and » is equated to 5/3. The effects on the veloc-
ity and temperature contours of changing y from 2 to 5/3 are shown in
Figure L,

Although the values of 8 and 8.71 employed in Figures 2, 3, and 4

for the free-stream Mach number are well centered in the range of wvalues
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Lo be expected in the incident solar wind, considerable variation is known
to oceur. In order to illustrate the magnitude of the effects to be antic-
ipated, results are presented in Figure 5 for Mach numbers of 5 and 12
for a gas with )y = 5/3. They show that the bow wave recedes from the
magnetosphere as the Mach number diminishes and as 7y increases. The
change is small in the ranges covered, however, as is the change in the
velocity contours. Temperatures in the flow field depend strongly on
both Mach number and y, however, with higher wvalues associated with
higher Mach number and larger 7.

A useful quantity for characterizing the location of the bow shock
wave ig the standoff distance A at the nose of the magnetosphere. This
distance has been shown in an aerodynamic context by Seiff (1962) and
Inouye (1965) to be very nearly proportional to the density ratio across
the nose of the bow wave for a wide range of values for 7y and M,. The
degree to which this simple empirical result is able to represent the
standoff distance is illustrated in Figure 6.

In conclusion, we have presented a sample of the type of results
that can be obtained using the continuum equations of magnetohydrodynamics
and gasdynamics, They augment the results for the location of the bow
wave given by Spreiter and Jones (1963) which has been widely used in the
interpretation of data from IMP-1 satellite and Mariner 2 and 4 space
probes. It has been reported in this symposium by Coon that data from |
the Vela satellites are in at least qualitative agreement with these
results. With respect to such comparisons, it should be observed that
our calculations only yileld information regarding the average bulk prop-

erties of the flow, whereas the usual plasma probes and magnetometers
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obgerve a mich more microscopic and instantaneous view of the plasma.
With respeet to the latter, it should also be recalled that substantial
quantitative discrepancies still remain between the values for bulk

parameters deduced from readings of plasma probes of different design

even when flown on the same spacecraft. These differences are certain
to be resolved as better understanding develops, and we present these
results at this time in order that they be available for comparison

with observational data as the latter becomes increasingly available.
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FIGURE CAPTIONS

Figure 1.- Streamlines and wave patterns for supersonic flow past the
magnetosphere; M = 8.71, 7 = 2.

Figure 2.- Contour maps of constant velocity, mass flux, density, and
temperature for supersonic flow past the magnetosphere; M, = 8.71,
Yy = 2.

Figure 3.- Magnetic field lines in plane of free-stream velocity and
magnetic field vectors for supersonic flow past the magnetosphere;
M, = 8.71, » = 2.

Figure L.- Effect on velocity and temperature contours of changing ratio
of specific heats from 2 to 5/3; M = 8.

Figure 5.- Effect on velocity and temperature contours of changing Mach

munber to 5 and 12; 7 = 5/3.

Figure 6.- Variation of standoff distance with density ratio across the

nose of the bow shock wave.
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